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ABSTRACT

Managerial decision-makers are increasingly supported by advanced data analyt-
ics and other Al-based technologies, but are often found to be hesitant to follow the
algorithmic advice. We examine how compensation contract design and framing
of an AI algorithm influence decision-makers’ reliance on algorithmic advice and
performance in a price estimation task. Based on a large sample of almost 1,500
participants, we find that compared to a fixed compensation, both compensation
contracts based on individual performance and tournament contracts lead to an in-
crease in effort duration and to more reliance on algorithmic advice. We further find
that using an Al algorithm that is framed as incorporating also human expertise has
positive effects on advice utilization, especially for decision-makers with fixed pay
contracts. By showing how widely used control practices such as incentives and task
framing influence the interaction of human decision-makers with AI algorithms, our

findings have direct implications for managerial practice.
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I INTRODUCTION

The emergence of big data has let algorithms and artificial intelligence (Al) enter the everyday
activities of businesses and other organizations. While low-stakes routine tasks are increasingly
being automated by advanced data analytics and other Al-based technologies, high-stakes man-
agerial decision-making has so far been largely spared from this trend (Keding and Meissner,
2021; Wilson and Daugherty, 2018). Although managers are typically not replaced by algo-
rithms, they are frequently supported by technological decision-aids in order to make better
informed and more efficient decisions, which can contribute to building competitive advantage
over competitors with less algorithmic support in decision-making (Allen and Choudhury, 2022;
Choudhury et al., 2020; Krakowski et al., 2023; Raisch and Krakowski, 2021). However, despite
the rapidly improving accuracy of Al algorithms (Dellermann et al., 2019), a growing number
of empirical studies observe that human decision-makers are more likely to rely on their own
judgement or expert opinions than the advice generated by algorithms, a phenomenon called
“algorithm aversion” (Commerford et al., 2022; Dietvorst et al., 2015, 2018).

While previous research has explored how task characteristics (Castelo et al., 2019; Hertz
and Wiese, 2019), the ability to modify an algorithm (Costello et al., 2020; Kawaguchi, 2020), or
various personality traits (e.g., Cao et al., 2022; Dietvorst and Bharti, 2020) influence algorithm
aversion, we know little about how decision-makers’ incentives and the possible incorporation
of human-expert knowledge into Al advice influence how decision-makers deal with algorithmic
advice. In this paper, we attempt to contribute to filling this gap by experimentally examining
the causal effect of the design of decision-makers’ compensation contracts and the framing
of an AT algorithm on advice utilization, the decision-makers’ effort duration, and eventual
performance.

From a traditional economics perspective, self-interested decision-makers, when being ex-
posed to performance-based incentives as opposed to rewards not related to performance, should
rely more on a human-outperforming algorithmic decision aid instead of relying on own (ef-
fortful) judgements. However, a three-decades old but still prominently cited stream of exper-
imental research suggests that incentivizing decision-makers in the presence of an algorithmic
decision aid negatively influences their performance (Arkes et al., 1986; Ashton, 1990). Accord-
ingly, the provision of financial incentives can “backfire” by encouraging decision-makers to
exert unproductive effort instead of relying on the algorithmic advice (Camerer and Hogarth,
1999).

However, several developments suggest a reexamination of these previous results. First,
due to the more frequent employment of Al-based decision aids in firms and everyday life

over the past decades, attitudes towards algorithms may have changed. Novel methodologies



of aggregating unstructured data emerged since the publication of this older empirical litera-
ture. Second, the use of incentives in compensation contracts of managers, auditors, financial
analysts, and other upper-level organizational decision-makers is becoming more widespread
nowadays, potentially changing their effects on algorithm uptake. Third, most previous studies
in this context have tied decision-makers’ compensation not to absolute but rather to relative
(tournament) performance (Arkes et al., 1986; Ashton, 1990; Samuels and Whitecotton, 2011).
Under tournament contracts, decision-makers are not necessarily incentivized to make good
judgements, but rather to outperform fellow competitors, which may be partially driving the
observed performance effects. Artificial intelligence algorithms also do not exist in a vacuum, as
they are developed and trained by human experts and thus typically incorporate human exper-
tise input when providing advice. If and how decision-makers react differently when knowing
that human experts were involved in the generation of algorithmic advice, and whether financial
incentives might have a different effect under those circumstances, remains an open question.
Thus, our study intends to shed further light on how different incentive contracts influence
decision-makers’ interactions with modern Al algorithms. More specifically, we empirically test
the behavioral arguments about the “backfiring” of financial incentives as brought forward by
Arkes et al. (1986) and Ashton (1990) against more mainstream economic arguments of rational
decision-making. In contrast to other more recent experimental studies on incentives and algo-
rithm use (e.g., Neumann et al., 2022; Samuels and Whitecotton, 2011), we directly compare
how different compensation contract designs (fixed payment, performance-based incentives, and
tournament incentives) influence decision-makers’ advice utilization from differently framed AT
algorithms. In addition, we observe the time decision-makers invest to analyze contextual in-
formation and their eventual task performance. This approach allows us to empirically examine
if and when the provision of financial incentives can exacerbate or mitigate algorithm aversion.
In our experiment, about 1,500 participants estimate the price per night of multiple Airbnb
apartments in Vienna. Participants receive the actual apartment listing information, which
includes the cover photo, textual descriptions, a city map with the approximate location, and
customer review scores. In addition, they are provided with imperfect price predictions by an Al
algorithm, which, with a 30% average deviation, outperforms typical human price estimations.
The algorithmic predictions are based on a random forest model and the knowledge of five local
renting market experts. In a 3 x 3 factorial between-subjects design, we manipulate the type
of compensation contract and the framing of algorithmic advice. In particular, participants
are compensated with either a fixed payment, incentives based on individual performance, or
tournament incentives. In terms of algorithmic advice, participants either receive no algorithmic
price predictions, price predictions with a description focusing on the random forest model of

the AT algorithm, or price predictions with a description highlighting the involvement of human



experts. As main dependent variables, we measure participants’ use of the algorithm (weight
of advice), their exerted effort duration, and their task performance (deviation from actual
apartment prices).

In our large sample, we find that both types of incentive contracts lead to a substantially
higher reliance on algorithmic advice compared to a fixed payment (although we observe a
marginally higher advice utilization with individual performance contracts compared to tourna-
ment contracts). Further, we observe that both performance-based and tournament incentives
have similar positive effects on effort duration, and positive but statistically not significant ef-
fects on performance, relative to a fixed payment. Thus, we observe no evidence that incentives
undermine decision-makers’ use of algorithmic advice. Concerning our human-framed Al ad-
vice treatment, we find that participants with a fixed payment rely more on algorithmic advice
when knowing that also human experts were involved in the predictions of the Al algorithm.
However, such human expert framing of the Al algorithm does not give an additional boost to
the advice utilization of decision-makers with performance-based or tournament incentives.

We thereby contribute to different academic conversations on algorithm use in contempo-
rary research in various fields such as accounting, economics, management, and psychology.
First, our research highlights under which circumstances human decision-makers and Al algo-
rithms can collaborate to augment each other’s strengths, and is thus related to an emerging
literature on human-machine interactions in augmented decision-making, both in accounting
(e.g., Costello et al., 2020; Emett et al., 2023; Estep et al., 2023; Labro et al., 2023; Libby and
Witz, 2024; Liu, 2022), and the broader management literature (e.g., Allen and Choudhury,
2022; Choudhury et al., 2020; Raisch and Krakowski, 2021).

Second, numerous contemporary studies found that decision-makers frequently distrust al-
gorithms, in particular when the algorithm makes mistakes from time to time (e.g., Chen et al.,
2022; Dietvorst et al., 2015; Prahl and Van Swol, 2017). For instance, in an auditing context,
Commerford et al. (2022) and Cao et al. (2022) show that decision-makers trust algorithmic
advice less than human expert advice. In contrast to previous research, we do not manipulate
human versus algorithmic advice but rather show that simply mentioning the involvement of
human experts in the development of an Al algorithm can increase decision-makers’ reliance
on advice, especially when they have fixed pay contracts. Thereby, we add a new perspective
to the literature on human trust in Al (e.g., Glikson and Woolley, 2020).

Third, our study answers recent calls for more research into the effectiveness of financial
incentives in decision-making tasks with algorithmic advice (e.g., Burton et al., 2020; Neumann
et al., 2022; Zellner et al., 2021). Older, but still prominently cited research in accounting
and psychology highlights the “paradoxical” phenomenon that incentives undermine poten-
tially positive effects of algorithmic decision-aids (Arkes et al., 1986; Ashton, 1990). In line



with other more recent experimental studies (Neumann et al., 2022), we do not observe such
incentive-induced algorithm aversion in our contemporaneous setting with a contextually-rich
price estimation task, a modern random forest algorithm, and salient financial incentives. Based
on our study, we rather conclude that financial incentives increase both effort duration and use
of algorithmic advice. Thus, we contribute to a long-standing stream of accounting research
on financial incentives in judgment and decision-making tasks (e.g., Awasthi and Pratt, 1990;
Ding and Beaulieu, 2011; Farrell et al., 2014; Libby and Lipe, 1992; Libby and Luft, 1993).

Our study also provides guidance for managerial practice. It has been received wisdom
that using financial incentives to encourage the use of algorithmic advice may backfire (Arkes
et al., 1986; Ashton, 1990). Given vast and ongoing changes to the kinds of algorithmic support
systems available to managers, our study re-investigates in a modern design how much risk of
backfiring of algorithmic advice still remains today. We find that there is little evidence of
incentives working against the uptake of algorithmic advice, for both main incentive types,
individual and tournament incentives. We follow up on this insight and compare algorithmic
advice to advice that joins human and algorithmic insights. Such advice is more readily taken
up by participants in our experiments.

As such, our study offers two actionable strategies to mitigate algorithm aversion. Al tools
are increasingly used at all organizational levels, from CEOs and other senior managers to
shop-floor employees. While the use of incentives in compensation contracts for higher-level
managerial decision-makers is almost ubiquitous, regular employees making day-to-day opera-
tional decisions with the support of Al tools typically receive a fixed salary. Our study highlights
that these decision-makers are more prone to algorithm aversion and that organizations can
benefit from offering them financial incentives. Our second recommendation is that when it
is not possible or practically feasible to use financial incentives, a simple framing intervention
highlighting the involvement of human experts in the development of the Al decision tool can
also positively affect attitudes towards algorithmic advice. We thereby add a dimension to
managerial insights into hybrid intelligence which so far emphasized the interpretability of al-
gorithms and the anthropomorphic advice provided by language models (e.g., Kellogg et al.,
2020; Murray et al., 2021; Shrestha et al., 2019).

Our paper proceeds as follows. In Section II we review previous research on the effect of
incentives on algorithm use, and derive hypotheses for our experimental study. Section III
describes our experimental design and procedures. Section IV presents the data analysis and

discusses our results, while Section V concludes.



IT LITERATURE REVIEW AND HYPOTHESIS DEVELOPMENT

Previous literature has established that decision-support from algorithmic advice can, in many
circumstances, enrich human decision-making (Dellermann et al., 2019; Estep et al., 2023).
Due to recent improvements, algorithmic advice has become superior to human expert advice
in many decision-making settings (e.g., Choudhury et al., 2020; Dietvorst and Bharti, 2020;
Labro et al., 2023), and decision-makers should disregard algorithmic advice only when their
human intuition, tacit knowledge, and experience allows them to interpret contextual circum-
stances in a superior way (Raisch and Krakowski, 2021). The field of medicine has been a
particularly fertile ground providing evidence for superior diagnostic performance combining
human cognition and algorithmic advice (e.g., Goldstein et al., 2017; Rajpurkar et al., 2022;
Tschandl et al., 2020). Recent insights from management and related fields include benefits of
algorithmic decision-support for strategy development (e.g., Dell’Acqua et al., 2023; Krakowski
et al., 2023), performance monitoring (e.g., Labro et al., 2023), and specialist training (e.g.,
Gaessler and Piezunka, 2023).

However, the relationship between algorithmic advice and decision quality seems to rest
on several contingencies. Humans tend to overestimate their own decision-making capabilities,
which leads to inferior performance (see e.g., Hoffman et al., 2017, in a hiring context). A lack
of trust in decision-support systems (Wang et al., ming) will reduce the benefits of algorithmic
advice, and decision-makers are less likely to rely on algorithmic advice when the advice does not
align with past experience (Liu et al., ming). When the algorithms underlying decision-support
systems are intransparent, decision-makers are also less likely to employ algorithmic advice
(e.g., Bauer et al., 2021, 2023; Poursabzi-Sangdeh et al., 2021). The distrust in algorithmic
advice seems to be task-dependent. For instance, Castelo et al. (2019) show that algorithmic
decision aids are trusted less for tasks that seem rather subjective versus objective in nature.
Hertz and Wiese (2019) find that people trust advice from an algorithmic source more when
working on analytical tasks than social tasks. In a hiring context, Dargnies et al. (ming)
show that providing overconfident managers with feedback on their past hiring performance
increases their voluntary adoption of algorithmic advice, while providing more details about
how the algorithm works does not. Finally, in an experiment, Jung and Seiter (2021) find that

algorithm aversion vanishes when decision-makers are working under time pressure.

II.A  Algorithmic Advice and Financial Incentives

Despite their relevance for the proliferation of new technologies in general, research on the
relationship between financial incentives and the use of algorithmic advice in decision-making

still relies on a set of rather traditional studies. Although the effortful task of combining



algorithmic advice with human judgment would intuitively benefit from incentivizing human
decision-makers (Burton et al., 2020), a “backfiring” of financial incentives has been observed
in the presence of algorithmic advice. Experimental studies by Arkes et al. (1986) and Ashton
(1990) find that, in the presence of algorithmic decision aids, incentivized participants perform
worse on judgment and decision-making tasks than unincentivized participants.

To explain this “paradoxical” effect, Ashton (1990) invokes a behavioral argument. Fi-
nancial incentives increase performance pressure on a decision-maker, and the effect of this
pressure depends on the nature of the decision task, e.g., whether it is boring and monotonous,
or interesting and requires complex cognitive activities.! Ashton (1990)’s argument is that
the introduction of an algorithmic decision aid can change the nature of a task, in that an
otherwise dull task becomes interesting and challenging, inducing a (misguided) belief that it
requires customized solutions to achieve high performance, as opposed to simply following the
algorithmic advice. Put differently, incentivized decision-makers feel as if they have to earn
their reward by coming up with their own judgments instead of using the readily available al-
gorithmic advice. Similarly, Camerer and Hogarth (1999) as well as Awasthi and Pratt (1990)
suggest that financial incentives may motivate decision-makers to exert too much, misdirected
effort. Samuels and Whitecotton (2011) suggest that both the size and the direction of the
“backfiring” effect of financial incentives may depend on the amount of contextual information
available to decision-makers in addition to the algorithmic advice.

This finding, prominently discussed in the managerial accounting literature, contrasts eco-
nomic theory as well as other experimental evidence on the effect of economic incentives on
performance. According to basic economic theory, self-interested individuals would always work
harder and more effectively if their compensation is properly tied to performance. The use of
performance incentives for managers, auditors, financial analysts, and other upper-level orga-
nizational decision-makers is common. In their review of experimental studies on judgment
and decision-making tasks, Camerer and Hogarth (1999) report that the provision of financial
incentives generally has positive effects on performance by improving the recall of remembered
items, mitigating anchoring bias, and reducing the variance of decision quality. The same has
been found in managerial contexts. Sprinkle (2000) reports performance-increasing effects of
incentives in task with production output decisions, in particular when subjects have the ability
to learn over multiple periods. Ding and Beaulieu (2011) show that in a balanced-scorecard
based judgment task, the provision of financial incentives reduces the unintended influence of
decision-makers’ affective biases (e.g., mood, emotions) on decision outcomes. Similarly, in a se-

ries of experiments, Farrell et al. (2014) collect behavioral and brain-activity data showing that

! Accordingly, Bonner et al. (2000) find that the likelihood of observing positive effects of financial incentives
on performance decreases in the complexity of the task and required skills.
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performance-based incentives induce decision-makers to process information more analytically
and to make more economically desirable investment choices.

These two conflicting streams of theoretical explanations and evidence, in combination with
rapid developments in the nature and application of algorithms in recent years, motivate our
study design. Using treatment conditions with and without algorithmic advice, and with and
without economic incentives, we test the following competing hypotheses. Hypothesis 1a follows
previous experimental “backfiring” evidence and associated behavioral arguments (Arkes et al.,
1986; Ashton, 1990; Camerer and Hogarth, 1999) where the provision of financial incentives
causes decision-makers to exert more unproductive effort and to rely less on algorithmic advice,
which eventually undermines their performance. This perspective is contrasted in Hypothesis 1b
with the economic theory argument that financial incentives should lead to more algorithm use
and better performance, given a reasonably powerful algorithm that outperforms an average

human decision-maker.

Hypothesis 1a. Decision-makers with financial incentives rely less on algorithmic advice (and

perform worse) than decision-makers who receive a fized payment.

Hypothesis 1b. Decision-makers with financial incentives rely more on algorithmic advice

(and perform better) than decision-makers who receive a fived payment.

II.B  Types of Financial Incentives

Conditional on incentives being provided, the degree to which incentives contribute to the up-
take of algorithmic advice (and eventually to better performance) likely depends on the type
of financial incentives. To date, most experiments on judgment and decision-making with algo-
rithmic advice have tied compensation not to absolute but rather to relative performance (e.g.,
Arkes et al., 1986; Ashton, 1990; Samuels and Whitecotton, 2011). With tournament incen-
tives, decision-makers are not necessarily incentivized to make good judgements but rather to
outperform fellow competitors (Burton et al., 2020; Lazear and Rosen, 1981). Already Ashton
(1990) argues that in a tournament, knowing that their peers have access to the same algo-
rithmic advice, decision-makers may assume that merely relying on the algorithmic advice will
not be sufficient to secure a top position. This perception could encourage decision-makers to
develop their own solutions or to use heuristics, rather than following the provided algorithmic
advice.

Ottaviani and Sgrensen (2006) formalize this intuitive argument in their “forecasters” model,
where each forecaster receives a private signal about the state of the world (e.g., based on
examination of available information), but also has access to a common signal (in our context:

the algorithmic advice). They show that, compared to individual performance incentives, in



a tournament setting expected-utility-maximizing agents will put more weight on their own
signal, as they now aim to maximize the likelihood to win against the other agent rather than
to maximize their forecast accuracy. Intuitively, if both agents share the same public signal,
the only way to set oneself apart is by exploiting a private signal. This incentive is present not
only for risk-loving individuals, but also for risk-neutral and slightly risk-averse ones.

These arguments are the basis for our design choice to explore two types of incentives:
individual performance-based payments, and a tournament. Hypothesis 2 suggests that under
tournament incentives, decision-makers are less likely to rely on algorithmic advice. As a
consequence, if algorithmic advice is superior in quality to the (average) human decision-maker,

absolute performance will decrease.

Hypothesis 2. Decision-makers with tournament incentives rely less on algorithmic advice

(and perform worse on average) than decision-makers with performance-based incentives.

II.C Types of Algorithmic Advice

A stream of (experimental) research has compared decision-makers’ reactions to human vs.
algorithmic advice.? Dietvorst et al. (2015) report that decision-makers lose confidence in an
algorithmic decision aid more quickly than in a human expert upon observing its mistakes.
Similarly, Efendié¢ et al. (2020) show that decision-makers judge slowly generated advice from
algorithmic decision aids to be of lower quality than slowly generated human advice. Dietvorst
and Bharti (2020) find that decision-makers favor riskier, and often worse-performing, human
judgment whenever they feel that an algorithm is unlikely to give near-perfect advice. In an
applied accounting setting, Commerford et al. (2022) show that auditors, who receive con-
tradictory evidence from an Al decision aid (instead of a human specialist), rely less on the
advice when proposing audit adjustments. Similarly, Chen et al. (2022) observe that managers
perceive negative sales forecasts as being less credible when they come from algorithms than
human experts.?

In modern algorithms, however, the distinction between algorithmic and human advice
becomes blurry. Algorithmic advice is often processed and modified, by the agent herself
or by other people (e.g., team members or assistants), before it enters the decision-making
deliberations. For example, a laboratory experiment by Dietvorst et al. (2018) as well as a field

experiment by Kawaguchi (2020) observe that giving human decision-makers the possibility to

2For an overview of how people deal with human advice in various conditions and under various incentives,
see Schotter (2023).

30ne exception is Logg et al. (2019), who find that people adhere more to advice when they think it comes
from an algorithm than from a human individual. This “algorithm appreciation” vanishes, though, when people
have to choose between their own advice and algorithms, or when they have more knowledge about the task.



modify an algorithmic advice substantially increases their propensity to use the algorithmic
decision aid, which can have a positive effect on their performance.

For these reasons, in our study we do not only employ a purely algorithmic advice tool,
but also “humanized” algorithmic advice that is prominently framed as including human ex-
pert input. We thus test whether, holding algorithmic performance and advice constant, an
algorithmic tool that is augmented by human expertise is trusted more than an Al algorithm
that is framed as only based on machine input. Adding this additional type of algorithmic
advice allows us to test the robustness of effects of financial incentives on algorithm uptake
(be they positive or negative) across differently framed algorithms. It also allows us to explore
whether higher trust in a humanized algorithm holds under different incentive conditions, since
previous literature comparing algorithmic and human advice has often used fixed payments or
no payments at all (e.g., Castelo et al., 2019; Chen et al., 2022; Commerford et al., 2022).

Our Hypothesis 3 extrapolates previous findings of higher trust in human than algorithmic
advice to our humanized algorithmic advice, thus postulating that framing the advice as based
on both human and Al input reduces algorithm aversion, leading to higher reliance on the

algorithmic advice and, consequently, higher performance.

Hypothesis 3. Decision-makers rely more on algorithmic advice (and perform better) when

the algorithm also considers human expertise.

Our full-factorial design of an incentive dimension (no incentives, individual performance
incentives, tournament incentives) and an advice type dimension (no advice, algorithmic advice,
humanized algorithmic advice) allows us to explore the robustness of the effects of providing
monetary incentives across different advice types, and of changing the framing of algorithmic
advice across different incentive conditions. However, it is difficult to predict possible interaction
effects ex-ante. First, there is a lack of previous research upon which we could build our
prediction. Second, we have a set of competing hypotheses for the effect of financial incentives,
and moderating effects of humanized algorithmic advice may differ depending on direction
and mechanism of incentive main effects. For instance, if financial incentives induce decision-
makers to maximize earnings and thus to focus on the prediction error of the algorithm, we
may expect that pure framing in the description of the advice will have less of an effect. As
a result, the human-expert input framing could have a stronger effect on decision-makers with
a fixed payment than on decision-makers with performance-based or tournament incentives.
If, on the other hand, financial incentives induce decision-makers to exert unproductive effort
and to generally distrust algorithmic advice, the human-expert framing of the algorithm could
counteract this negative effect. Thus, we will treat possible interactions as an exploratory

analysis, charting new territory without a specific hypothesis.
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IITI EXPERIMENTAL DESIGN AND PROCEDURES

Our experiment employs a 3 x 3 factorial between-subjects design in order to study the effect
of individual and tournament incentives as well as human-expert-framing of algorithmic advice

on decision-makers’ algorithm use, their exerted effort duration, and their task performance.

IIT'A  Task

Participants had to estimate the price per night of Airbnb apartments in Vienna (Austria)
as of June 2021. Cost-, price-, demand-, and revenue-forecasting are part of many manage-
rial occupations, and are activities that will benefit greatly from the advancement of algo-

rithms.*

Out of a sample of 11,567 listings obtained from the open-source project Inside
Airbnb (www.insideairbnb.com), 10 apartment listings were selected which were no longer pub-
licly available on the Airbnb platform at the time of the experiment (so prices could not be
looked up through a search). For each listing, participants were provided with a substantial
amount of contextual information from the original listing.” Each participant received the 10
listings in random order, one by one. In order to reduce spillovers both between tasks and be-
tween participants, our experimental subjects did not receive feedback about their performance,

neither in-between tasks nor at the end of the study.

III.B  Independent Variable 1: Compensation Contract Design

To examine how the design of decision-makers’ compensation contracts influences their use of
the algorithmic advice and their eventual task performance, we manipulate how participants
get paid. Participants, if selected to be paid (see below for details on our implementation of
a between-subjects random incentive system), either received a performance-independent fixed
payment, individual performance-based incentives, or tournament incentives.

More specifically, in the fized payment condition, participants received a lump sum of
EUR 50 for completing the price estimation task, not contingent on their task perfor-
mance. Participants in the performance-based incentives condition were paid according to
an incentive-compatible binarized quadratic scoring rule (Hossain and Okui, 2013). They
received either a payment of EUR 100 or EUR 0, with the probability of the large prize

4Poursabzi-Sangdeh et al. (2021) use a similar price forecasting task to explore the effect of model complexity,
and Chen et al. (2022) employ a demand forecasting task in their study.

>This included original listing title, cover photo, room type (entire apartment or private room), district of
Vienna and an approximate location on a city map, number of accommodated guests, number of bedrooms,
number of beds, number of bathrooms, superhost status, identity verification status, number of reviews, average
overall review rating, average review rating within six categories (Accuracy, Cleanliness, Check-in, Communi-
cation, Location, and Value), and the original “About this space” description (limited to 500 characters). See
Appendix E for screenshots of the task presentation.
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being (quadratically) contingent on their performance in the price estimation task, equaling
max{100 — 0.2 x (estimate — true price)?, 0}. Theoretically, this payment rule also neutralizes
risk attitudes (of expected utility maximizers).®

In the third, tournament incentives condition, participants were randomly paired with a
second participant to determine their relative performance. In each pair, the better performing
participant (i.e., the one with the lower deviation from the true apartment price) received a

payment of EUR 100, while the worse performing participant received EUR 0.

HI.C  Independent Variable 2: Algorithmic Advice and its Framing

To examine if and how the effect of financial incentives might be different in the absence
versus the presence of an algorithmic decision aid, we manipulate between-subjects whether
participants receive advice from an Al algorithm or not, and how the inclusion of human
expertise in the algorithmic advice is framed.

In the no advice condition, participants worked on the price estimation task only based on
the provided contextual information, without any algorithmic decision aid. In the conditions
Al advice and human-Al advice, participants had to submit two estimates for each of the 10
listings: first without any advice using only the contextual information (as in the no advice
condition), and then again after receiving a prediction from an algorithm.”

To provide participants with algorithmic advice, we developed a random forest model that
utilizes a raw dataset of 11,567 apartment listings in Vienna and generates price predictions
based on numerous numerical input variables.® In addition, we obtained price estimates for
the selected apartments from five experts. These experts were active landlords in Vienna with

substantial experience with the Viennese real estate sector and in professionally renting out

6For implementation, we randomly drew a number between 0 and 100. If the score was higher than or equal
to that random number, the participant received EUR 100, and EUR 0 otherwise. In theory, this approach
allows us to elicit subjects’ truthful beliefs independent of their risk attitudes. See Schotter and Trevino (2014),
Schlag et al. (2015), or Charness et al. (2021) for reviews of theoretical and empirical evidence on incentive-
compatible scoring rules. To ease understanding of the binarized scoring rule, we additionally provided a table
mapping different estimation errors to probabilities for the high prize, and explained that the more accurate a
participant’s price estimations, the higher is the chance to receive the EUR 100 reward.

"The two-stage design was mainly a methodological choice to cleanly measure the weight of advice in the
final estimate. However, we believe that the procedure also reflects managerial practice well. When facing
a decision, financial analysts, auditors, and managers in various other functional domains typically start with
receiving or collecting relevant contextual information, forming their own initial (sometimes intuitive) judgment.
This initial step is then often followed by the consultation of algorithmic decision aids. The use of Al-based tools
usually requires some prior knowledge of the subject matter. At the same time, in managerial decision-making
and many other settings, it is very unlikely that the advice from an AI system is the final decision. Recent
legislation proposals in the European Union even include a mandate for human intervention whenever there are
legal ramifications of a decision (e.g., in HR and hiring contexts).

8Specifically, these are apartment type, number of bedrooms, number of beds, number of accommodated
guests, district of Vienna, number of reviews, average review rating, and superhost status. The model and its
selection process are described in detail in Appendix D.
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apartments in Vienna through the Airbnb platform. They completed the task in advance,
without an algorithmic decision aid. The final algorithmic decision aid displayed a weighted
average of those two estimates, with the random forest model weighing 80% and the average
human expert estimate weighing 20%. Participants knew that this algorithmic aid had a
mean absolute error of about 30% and that it derived its price predictions based on several
components. In our context, the algorithm easily outperforms an average human decision-
malker.?

The two algorithmic advice conditions only differ in the framing of the algorithm. In the
human-AI advice condition, we de-emphasized the random forest model, but highlighted the

10 However, note that in both conditions, participants received

human expert involvement
exactly the same algorithmic advice and the same information that it has a mean absolute
error of 30%. For a rational Bayesian decision-maker, only the eventual precision of the given
advice is relevant, not on how many and which sources it relies. In this sense, our human-AIl

advice condition is purely a framing manipulation.!!:!?

III.D Dependent Variables: Algorithm Use, Effort, and Estimation Error

Our three main dependent variables are participants’ use of the algorithm (measured as the
weight of advice), their exerted effort duration (measured as time in seconds), and their per-
formance (measured as the absolute estimation error).

First, for those participants who receive algorithmic advice, we measure how much they
rely on this advice when making price estimations. In line with previous experimental research

on advice-taking in judgment tasks (e.g., Logg et al., 2019; Prahl and Van Swol, 2017; see

9The relative mean absolute error of participants in our no-advice condition is 76.50%, with 95% of partic-
ipants performing worse than the algorithm.

10Tn particular, in the human-AI advice conditions we describe to participants that “the price estimate
incorporates the expert advice from 5 individuals. The five experts have substantial experience in the pricing of
Airbnb apartments and are familiar with the housing and accommodation sector in Vienna.” We intentionally
kept the expert description rather vague and only refer to their expertise, in order to mitigate potential effects
of prior positive or negative experiences with landlords.

"' The framing may also affect the perception of parameters of the advice error distribution which we did
not fix through the instructions. For example, participants may think that a combination of algorithmic
advice with human expertise may curtail long tails of the error distribution. However, for typical symmetric
single-peaked mean-zero error distributions, the effect of presumed affected secondary distribution parameters
(kurtosis, skewness) while holding the mean absolute error constant on participants’ guesses is likely negligible.

12Following the recommendation of a reviewer, we ran a follow-up study in which we tested how decision-
makers judge the credibility of advice from five additional types of human-Al algorithm interactions. In this
additional experiment with more than 1,500 participants, we do not find any meaningful differences in advice
credibility between the relatively vague description of a human-ATl algorithm used in our experiment, and five
additional, more detailed descriptions of possible human-Al algorithm interactions. We present this additional
evidence in Appendix C.
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Bonaccio and Dalal, 2006, for an overview), we measure participants’ algorithm use as the
weight of advice based on a definition established by Harvey and Fischer (1997), by relating
the absolute difference between participants’ final and initial price estimation to the absolute
difference between the algorithmic advice and participants’ initial price estimation. Since, as
Bonaccio and Dalal (2006) discuss, this definition may lead to ambiguous values smaller than
0 or larger than 1 in certain cases (e.g., when initial and final estimate are on different sides
of the algorithmic advice, or the decision-makers’ final price estimation moves in the opposite

direction of the advice), we censor the weight of advice to values between 0 and 1.3

abs (final price estimation — initial price estimation
Weight of advice = min (max (O, ( P 1% )) )

abs (algorithmic advice — initial price estimation)

As a second dependent variable, we measure how much effort participants exert on the
price estimation task, by collecting data on the time (in seconds) that participants devote
to estimating the price per night for each Airbnb apartment (“effort duration”, see Bonner
and Sprinkle, 2002). Importantly, we kept the length of the information presented on the
screens exactly the same across treatments, so that our time measure accurately captures effort
duration. For participants receiving algorithmic advice, effort duration is the sum of the time
spent on the initial price estimation and the time spent on the final price estimation. For
participants in the no advice condition, effort duration measures the time spent on their initial
(and only) price estimation. In our analyses, we discuss differences in the time spent in total
as well as on the initial and final price estimation.

Third, in line with antecedent research on algorithm aversion (e.g., Dietvorst et al., 2015,
2018), we define participants’ performance in the decision-making task in terms of their esti-
mation error, which we measure as the absolute deviation between their final price estimation

and the actual listing price of the apartment on the Airbnb platform.

III.E  Experimental Procedures

We recruited participants from experimental laboratory subject pools at three large public
universities in Austria via the recruitment system ORSEE (Greiner, 2015). Each invited person
received a unique invitation link, allowing us track (potential) double participation. We received
1,634 full responses. 117 participants failed an attention check (see below). We excluded
a further 28 participants from the analysis due to potential double participation (using the

same invitation link, though they may indeed be different subjects) or missing contact details,

13We note that when the algorithmic advice is identical to a decision-maker’s initial estimate, the weight of
advice is undefined. In total, we have 179 cases of undefined weight of advice, which represents less than 2% of
all advice observations. Since there is no established approach to correct those undefined values, we omit them
in the respective analyses.
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leaving a remaining sample of 1,489 participants for analysis. Table 1 shows the distribution
of participants over the nine treatment cells.'

The mean age of our participants was 25 years, and 61% were female. About 50% are
undergraduate students, 40% are graduate students, and the remaining 10% either completed
their studies or pursue more advanced postgraduate studies. About 53% of the final sample are
Austrian nationals, 16% are German, with the remaining participants being from 64 different

countries.

TABLE 1: RANDOM SAMPLE SIZES PER TREATMENT CONDITION
No Advice Al Advice HumanAl Advice

Fixed Pay N = 169 N = 167 N = 186
Performance Pay N = 172 N =170 N =156
Tournament Pay N = 159 N = 168 N = 142

We believe that our sample of student participants is suitable for our research question and
that it has multiple advantages over samples of professionals. First, our sample fits well to the
task of estimating the price of Airbnb apartments, as more than 75% of our participants had
booked an apartment via this platform in the past. While participants were familiar with the
setting, the task was still sufficiently challenging for them. Second, student participants have
low opportunity costs for participating, they can be more cost-effectively incentivized in the
experiment, and they have steep learning curves, quickly adapting to the experimental envi-
ronment. Third, with participants recruited from established offline university subject pools,
we can rule out that bots participated in our experiment. Frechette (2015) finds in a review
that conclusions reached by using standard student pools mostly generalize to professionals.

Our experiment was self-paced and programmed in Qualtrics. Participants were randomly
assigned to one of the 9 experimental conditions. After an informed consent screen, participants
received instructions conditional on the assigned treatment (see Appendix E for instructions
and screenshots). Before participants proceeded to the actual price estimation task, they had

to correctly answer some comprehension check questions.

“Table A.1 in the Appendix provides a complete balance table across participant characteristics. In our
initial power calculation we considered a small-to-medium standardized effect size (Cohen’s d) of 0.4. Arkes
et al. (1986) and Ashton (1990) do not provide sufficient statistics in their papers to calculate relative effect
sizes, with the exception of Ashton (1990)’s results on the effect of incentives on task performance, which yields
a Cohen’s d of 0.574. For a t-test between two treatment conditions at 80% power and with an alpha level
of 0.05, and effect size of 0.4 implies a minimum sample size of 99 participants, such that we aimed for 100
participants per cell. In the end we received 165 valid responses per treatment cell on average. This implies
an (average) power of 95% to detect the above standardized effect size, or respectively allows us to detect even
smaller effects at 80% power.
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As another check of proper participation and attention, we added an “attention check list-
ing” to the 10 actual apartment listings, for which all participants needed to submit “1,000”
as price per night. Participants were informed that there may be an attention check and that
failing to pass it would lead to their exclusion from payoffs.

After completing the main experimental task, participants answered a post-experiment-
questionnaire that included measures for demographics, risk-taking attitudes (item based on
Dohmen et al., 2011; Tasoff and Zhang, 2022), task enjoyment (intrinsic motivation), overcon-
fidence, information reliance, unfamiliarity challenges, and source credibility (item based on
Chen et al., 2022). On the final screen, we also asked them to provide us with their full name
and email address as we needed this information to administrate payments.'®

The study ran for about a week in early December 2021. Across all experimental conditions,
the median time to complete the experiment was 19 minutes. After the study concluded, we
randomly selected 102 participants for payment. These participants earned either EUR 0, EUR
50, or EUR 100, depending on their experimental condition (see above) and their performance
in one of their 10 or 20 estimation tasks.'® On average, these selected participants received a
payment of EUR 45.10 via bank transfer. This implies an (ex-post) average payment of EUR

3.09 across the full sample for a 19-minutes task.

IV REsuLTS

In the presentation of our results, we start by discussing the distribution of participants’ es-
timates with respect to the advice given by the algorithm. We then present the outcomes in
terms of our three main dependent variables, weight of advice, time spent on the task, and
estimation error. We use regressions to analyze differences between our treatment conditions.
This is followed by a discussion of responses to our post-experimental questionnaire and their
relation to our variables of interest. We conclude this section with a discussion of our results

with respect to the hypotheses laid out in Section II.

IV.A  Distribution of Estimates

Our participants often deviate from algorithmic advice. The normalized histograms in Figure 1

present the relative deviation of participants’ own price estimations from the algorithmic pre-

150nly one participant did not provide these contact details (and is excluded from the final sample).

16We thus use a “between-subjects random incentive system”. Theoretical and empirical evidence in experi-
mental economics (see, e.g., Azrieli et al., 2018; Charness et al., 2016) suggests that this is incentive-compatible
and preempts wealth effects and hedging strategies, and that participants appear to react more strongly to the
nominal value of a payment than to the probability of receiving that payment (see, e.g., March et al., 2016). We
pay 102 participants instead of 100 as announced because we needed to form matched pairs in the tournament
incentive conditions after random selection of participants.
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dictions. The first histogram focuses on the estimates of participants who do not receive any
algorithmic advice, and thus have to make only one price estimation for each of the 10 listings.
We observe that estimates vary considerably. Most of those estimates are in the range of -50%
to +100% relative to what the algorithm would have advised, with no clearly observable peak.
In general, participants tend to over-estimate apartment prices relative to the algorithm (mean
of +42%, median of +24%, std.dev. of 87%), with some extreme outliers in the right tail. In
the second histogram this is contrasted by the distribution of the initial price estimations by
participants in treatments where algorithmic advice is given. While these are estimates before
the participant received algorithmic advice for the particular task, we observe a compression of
the distribution compared to estimates with no advice at all (mean of +15%, median of +6%,
std.dev. of 54%). This is due to learning effects across tasks: algorithmic advice received for
earlier tasks calibrates estimates given in later tasks.!”

However, the spread across estimates is still significant. Finally, the third histogram shows
the distribution of participants’ final price estimations, which they make after receiving al-
gorithmic advice. In contrast to the first two histograms, participants’ price estimations are
almost symmetrically centered around the algorithmic price prediction (mean of +7% and
median of +4%), and the number of outliers is substantially lower (std.dev. of 24%). This
indicates that participants respond to algorithmic advice by moving their estimation towards
the advice. However, while the modal deviation from advice is zero, there is still substantial
variation above and below the algorithmic price prediction.

In Table A.2 in Appendix A we show OLS regressions that predict the true price of an apart-
ment based on the initial individual estimate of a participant and the algorithmic advice she
received (with the constant being omitted). The coefficients thus represent the optimal weights
participants should have given their initial estimate and the algorithmic advice in order to min-
imize prediction errors. While coefficients for the participant’s initial estimate are significantly
different from zero (and thus have informational value), they vary between 0.021 and 0.056,
and the predicted coefficients for algorithmic advice are between 0.847 and 0.877, depending
on algorithm and incentive condition. Thus, participants should weigh the algorithmic advice
much higher than their own estimate. As Figure 2 below shows, the maximum average weight
of advice across experimental conditions is less than 50%), indicating some degree of algorithm

aversion.

I"When we compare participants’ error in the initial price estimate in their first task with the error on the
initial estimate in the 10th (last) task, we observe not much change in the no advice condition. The average
initial error even slightly increases from 72.7% to 77.1% (p = 0.034, Sign Test on matched pairs). Contrary, in
the AI advice treatments, participants calibrate their initial estimates through algorithmic advice received in
previous tasks for different apartments. The mean absolute error of the initial estimate decreases from 71.5%
to 39.0% (p < 0.001) in the Al-advice condition, and from 83.0% to 40.0% in the human-Al-advice condition
(p < 0.001).
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FIGURE 1: RELATIVE DEVIATION OF INITIAL AND FINAL PRICE ESTIMATIONS FROM
ALGORITHMIC PRICE PREDICTIONS
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IV.B  Aggregate Results

Figure 2 presents means and standard errors of our three dependent variables weight of ad-
vice, time spent on task, and performance (measured as absolute estimation error) for our
fully-crossed factorial design of three incentive treatments (fized payment, performance-based
incentives, and tournament incentives) with three advice treatments (no advice, AI advice, and
human-Al advice).

Concerning algorithm use, the figures in the first row show that in the Al advice condition,
participants’ weight of advice is substantially higher when they receive performance pay (mean
0.480) or compete in a tournament (mean 0.444) than when they are compensated with a fized
payment (mean 0.383). This positive effect of financial incentives on algorithm use, relative
to fized pay, is similar in the human-AI advice condition, although the margins are smaller.
Further, participants whose compensation is contingent on winning a tournament, show a some-
what lower weight of advice than participants whose compensation is performance-based, but

still substantially higher compared to participants who receive a fized payment. Finally, for
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FIGURE 2: TREATMENT AVERAGES FOR WEIGHT OF ADVICE, TIME ON THE TASK, AND
ESTIMATION ERROR
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Notes: F, P, and T stand for treatments ‘Fixed Payment’, ‘Performance-based incentives’ and ‘Tourna-
ment incentives’, respectively. Whiskers indicate standard errors based on OLS regression models con-
trolling for order, apartment, and subject pool fixed effects, with robust SEs clustered by participant.
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fizxed-pay participants the weight of advice is visibly higher in the human-AI condition than in
the Al advice condition, while there are no discernible differences in the performance pay and
tournament treatments.

The second row shows how much time (in seconds) participants spend on each price esti-
mation (“effort duration”), contingent on our treatments. Irrespective of whether they receive
algorithmic advice or not, participants consistently spend more time on the price estimation
task when their compensation is based on performance or contingent on winning a tourna-
ment than when they receive a fized payment.'® For instance, in the no advice condition, fized
pay participants work on average for 41.66 seconds, while participants spend 44.76 seconds on
the task when they receive performance pay and 45.12 seconds when they are competing in
a tournament. The difference in the effort duration between unincentivized and incentivized
participants in the Al advice and in the human-Al 